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The uniqueness of the sollution of an equation for the square of the Brunt-V~iisftlii frequency (BVF), constructed using a sequence 
of dispersion curves for internal gravitational waves in an ocean of constant depth with a continuously changing BVF, is investigated 
in specific classes. Examples of functional classes in which the BVF is uniquely re-established using a sequence of dispersion 
curves are presented. © 2000 Elsevier Science Ltd. All fights reserved. 

1. FORMULATION OF THE PROBLEM 

A continuously stratified ocean of constant depth H is considered. According to a previously described 
[1] mathematical model of such an ocean, the dispersion curves of the internal gravitational waves are 
determined by the eigenvalues o 2 = o.~(k 2) of the boundary-value problem 

W" - I~(z) W' + It(z) - co 2 
g (02 _f2' k 2 W = O  

k 2 
z~[-H,0];  W(-H)=0, W'(O)=g--~_f2W(O) 

0.1) 

where Ix(z) is the square of the Brunt-V~iis~il~i frequency (BVF), g is the acceleration due to gravity, f 
is the Coriolis parameter, k is the wave number and ¢o is the frequency of ihe free harmonic waves. 

The determination of the stratification of an ocean which is quantitatively characterized by the BVF 
is one of the most important problems in oceanography. The problem of constructing the BVF using 
a known sequence of dispersion c u r v e s  {0)  2 = o~(k2)}, that is, the inverse eigenvalue problem for problem 
(1.1), is of great interest. This problem includes the questions of the uniqueness of the re-establishment 
of the BVF from the dispersion curves and the construction of algorithms for the re-establishment of 
the BVF from the dispersion curves in one or another class. Some of these questions have been 
considered previously [2-5]~ (we correct a misprint: in formulae (2.2) of paper [2], there should be p.(x) 
instead of p,(z) under the integral signs). 

Below, problems of the uniqueness of the re-establishment of the BVF using dispersion curves are 
investigated on the basis of the so-called fundamental equation for the BVF, which is determined by a 
known sequence of dispersion curves. 

2. THE FUNDAMENTAL EQUATION 

We will change from boundary-value problem (1.1), after changing to the dimensionless quantifies 

_ w n2=u__c02"  2=H2k2 ' q(x)=Htt(_nx), F2=n__/2 
g g 
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to the boundary-value problem 

u" + q(x)u" ÷ q(x) - .q2 
rl 2_F2 ~2u=O 

u'(O) = -~Z(rl2 - F2)-Iu(O), u(l) = 0 

(2.1) 

with the two parameters ~ and "q, which represent the wave number and the frequency of the free 
harmonic waves respectively. 

As in [1], we introduce the parameter ~, = ~2(rl2 - F2) -1 into the treatment and, in addition, the 
parameter s = ~2_ LF 2 - ~2. At the same time, boundary-value problem (2.1) is rewritten in the form 

(pu')'  + Z?)pu = -spu 

u'(0) =-2~.u(0), u(l) = 0, p(x) = ex q(t)dt 

Boundary-value problem (2.2) is equivalent to the integral equation with a symmetric kernel 

I 

y(x) = s~ K(x,t,~,)y(t)dt, y(x) = ~[p(x)u(x) 
o 

~ Y )  dy, {t, x<~ t e x  o =  
K(x,t,~.) = exp[-k(x + t)] PrY) x, x > t 

(2.3) 

(2.4) 

For any real ~., the kernel K(x, t, ~.) satisfies the conditions in Finkel'shtein's theorem [6] for oscillatory 
behaviour and, consequently, it is an oscillatory kemel. Integral equation (2.3) therefore has a 
denumerable set of positive and simple characteristic values s0(~. ) < sl(~.) <. 

In order to explain how the functions sj(~.) are defined in terms of the functions rl~(~ 2) = 
g-IHo)2(H-2~2), 

which are assumed to be known in the inverse eigenvalue problem, we note that the pair of equations 

= ~2(rl2 - F2) -t, sj(k) = k2 _ ~,F 2 _~2 (2.5) 

2 2 2 determine the dispersion curves lq = D :(~ ) of problem (2.1) in parametric form, subject to the condition 
J • 2 2 2 2 , 2 - 1  that the parameter ~, runs through a set of values of the function ~.j(~ ) = ~ (r l j ({)  - F  ) , observed 

on the ray (0, +90). Since ~jl{ 2) becomes larger in (0, +oo) [1], the set under consideration is the ray 
(cj, + oo), where cj = lin~/(~ ) when ~ ~ 0 .  

It has been shown in [1] that rl}(~ 2) = F 2 when ~ --->0. Hence, putting tiE(0) = F 2, we obtain that cj 
is the reciprocal of the angular coefficient of the tangent to the graph of the dispersion curves rl 2 = 
.q}(~2) at the origin of the coordinate system in the plane (~2, lq2). 

It also follows from (2.5) that the function sj(~.) can be directly calculated using the formula 

sJ (~'J (~2)) = ~.~ (~2) _ F2~.i (~2) _ ~2 

at the points Z = ~,j(~2) running through the ray (c h +oo) when ~ runs through the ray (0, +oo). 
The function sj@) is holomorphic in a certain neighbourhood Gj(1) of any segment I of the real line. 

This follows from the fact that the family of integral operators K(~.) with a symmetric real kernel 
K(x, t, ~.) is a self-adjoint holomorphic family of type (A) of compact operators, defined on the real axis 
and that, for any K(~.), the operator ~. ~ R has simple characteristic values which do not vanish [7]. 

As an analytic function, sj(~.) with its values in the ray (cj, +co), is defined in the whole of its domain 
of analyticity and, in particular, sj(~.) is defined on the real line. Hence, the sequence of characteristic 
numbers {co 2 = co2(k')} of integral equation (2.3), which depends analytically on the non-eigenvalue 
parameter ~., is uniquely defined by the known sequence of dispersion curves {sj(~.)} of problem 
(1.1). 
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The trace of kernel (2.4) 

A(7~) = n~0 1 (2.6) 
_ s,(X.) 

can be represented in the form 

i i i 
A(3.)= l K(x,x,~,)dx= I @(x)exp(2Lr)dx, ~(x)=  I P(t-X)dt 

o o ~ p ( t )  
(2.7) 

The function ¢~(x) is defined in terms of AQ.) using an inverse Laplace transformation and, 
consequently, the l~nction ~(x) is determined by the sequence of dispersion curves since, according 
to formula (2.6), the traceA(~.) is determined by this sequence. The last equality of (2.7) can be looked 
upon as an equation which the function p(x) satisfies. 

Note that it follows from the definition of p(x) in terms of q(x) that the problems of finding p(x) and 
q(x) are equivalent. 

The last equation of (2.7) is equivalent to the equation 

• (x) = ! exo q(~)d~ dt (2.8) 

in q(x). Equation (2.8) is the fundamental equation in this paper. 
It can be shown by direct verification that, if the function q(x) is a solution of Eq. (2.8), the function 

ql(x) = q(1 -x )  will also be its solution. It follows from this that Eq. (2.8) cannot, generally speaking, 
be solved uniquely in the class of continuous functions in the interval [0, 1]. There is therefore interest 
in the problem of picking out the functional classes ~,  in which it is uniquely solvable, subject to the 
condition that the function ~(x) is chosen from the class 

We shall refer to such classes W as classes of uniqueness for Eq. (2.8). 

3. SOLUTION OF THE FUNDAMENTAL EQUATION IN THE CASE OF 
A PARTIALLY KNOWN BVF 

We will consider the case when the function q(x) ~ C[0, 1] is known in the interval [a, 1], a ~ (0, 
1). We note that, in a real ocean, the BVF changes appreciably at a comparatively shallow depth and 
is practically constant at considerable depths (more than 1 kin). The case being considered is therefore 
of practical interest. We will show that, if the function q(x) is equal to a known function qo(x) in the 
interval [a, 1], then it is uniquely determined from Eq. (2.8) in the interval [0, 1 -a] .  

Replacingx wi'th 1 - x  in the last equality of (2.7) and differentiating the resulting equality, we obtain 

X 

-~ ' ( I  - x) = p(X)p(1) +!  p(iq(1 -x+t)- x + t) p(t)dt (3.1) 

It follows from (3.1) that P(1) = - (~ ' ( 1 ) )  -1 is determined by the dispersion curves. If 0 < t < x < 
1 -a, then 1 - x  + t ¢ [a, 1] and, consequently, the quantities 

rl-x÷t "1 
q(l-x+t),  p(I-x+t)=p(1)exp[ ! qo(~)d~J 

are known for t ~ [0,x]. The Volterra equation of the second kind (3.1) for 9(x) has a unique solution 
in the class of continuous functions in the interval [0, 1 - a]. 
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Ifq(x) = q0 = const in [a, 1], then, forx ~ [0, 1 - a ] ,  the equality 
x 

exp(-q0x)~(l - x) = - ~ ' ( I )  S p(t)exp(-qot)dt 
0 

(3.2) 

follows from the last relation of (2.7). 
By differentiating this equation, we obtain the explicit representation 

p(x) = -P[O'(I  - x) + qo~(l - x)], P = p(l), x ~ [0, ! - a] (3.3) 

The case when a = 1/2 has been considered previously [4, 5] (see.also the last two papers cited in 
the footnote). Note that the factor K(x, t, ~) has been omitted in the formula of the kernel 
in [4, 5]. 

If it is known that q(x) ~ C1[0, 1], then, when a = !/2, there is no need to know that value q0 beforehand 
since it can be found using the function ~(x), 

We will now show how this can be done. Differentiating relation (3.3) and putting x -- 1/2 in 
the resulting equality and in equality (3.3), we obtain (everywhere henceforth up to the end of 
Section 3 

p = ¢ , :  ¢ , -  = 

(3.4) 
q0P = - P ( - ~ " -  qo~'), P = -p(dp" + qod~) 

It follows from (3.4) that 

~ "  = - 2 q o ~ "  - q02~ 

The correctness of the equality 

~ ,2  _ ~ , ,  = ( ~ ,  + qo~)2 (3.5)  

follows from this. 
Since P > 0, it follows from (3.4) that the expression in the brackets on the right-hand side of (3.5) 

is negative. Hence, 

qo =(-dP'-B)I~. B=(~ '2-~xl~') ~ 

4. SOME G E N E R A L  NECESSARY C O N D I T I O N S  FOR THE S O L U T I O N S  
OF THE F U N D A M E N T A L  E Q U A T I O N  

We assume that the function q(x) is m - 1 times differentiable in the interval [0, 1]. Then, the 
functions 

p(x), pl(x) = exp q( l - t )d t  
LO 

will be m times continuously differentiable in [0, 1]. The obvious relation 

p(x)p~(l - x ) = P  

holds between the functions p(x) and p~(x), and, 125c using this, we can rewrite Eq. (2.8) in the form 

! 
S p(t - x)pi (I - t)dt = P~(x) (4.1) 
;¢ 

Differentiating the identity (4.1) k times (k = 1, 2 . . . . .  m) and putting x = 0 andx = 1 in the resulting 
equality, we obtain, in explicit form, the conditions which the solutions of the fundamental equation 
satisfy 
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(_l)k ~ ( t ~ ) -  ~t ,~(j),~ (k-j-l)  + } _(k),,. ( l - t ) d t  
• " v ( O )  - -  I " ( 0 ) 1 " 1 ( I )  ~"/(/)l'~i 

j=O 0 

~ ( k )  ~ '  ~(J)~ (k- / -O. k = ! , 2  ..... m ( - I )  k r ~ ( I )  = v(O)Vl(o) , 
j=o 

(4.2) 

I t  is now possible to change  f rom equali t ies (4.2) to equali t ies which explicitly relate  the values  of  
the funct ion q(x)  and its der ivat ives at the po in t sx  = 0 a n d x  = 1. For  instance,  when  m = 3, af ter  some  
reduct ion  we obta in  f rom equali t ies (4.2) 

q (0 )+q ( I )= t lD  I, Q I = O 2 ,  Q2=@3 

q ' (0)  - q ' ( l ) -  q(0)q(i) = (I) 4, Q3 - 4q(O)q(I) = (I) 5 
(4.3) 

where  

cb t = P @ " ( I ) ,  d) 2 = - 1  - @ ' ( 0 ) ,  d) 3 = ~ " ( 0 ) -  P @ " ( I )  

(I) 4 = - p ( ~ ( 3 ) ( i )  _ ~ f ,  
I 

(1)s=-(1)13)(O)+(1)4 - (1)2, {2,, =J qn(t) dt 
o 

5. E X A M P L E S  O F  P A R A M E T R I C  C L A S S E S  O F  U N I Q U E N E S S .  

Using conditions (4.3), which the solutions of Eq. (2.8) must satisfy, certain parametric classes of uniqueness 
for Eq. (2.8) can be constructed. 

As an example of such a class, we consider the class of functions 

"PI = {cexp[-~(z -a)2  ] : c > O, a>O,  z~[O,l]} 

in which a is an arbitrary fixed real number. The second and third equalities from (4.3) give two equations which 
c and a must satisfy 

I 
cp(tx) = @2, c2P(2a) = @3; p(a) = ~ e x p [ - a ( z - a )  2 ]dz (5.1) 

0 

On dividing, term by term, the square of the first of equalities (5.1) by the second, we obtain an equation for a 

f(ct) = @2@~I, f(oO=(p(Ct))2(p(2Ot))-I (5.2) 

It can be shown that the functionf(a) decreases in [0, +~] ,  and it follows from this that Eq. (5.2) has a unique 
solution. The positive constant c is uniquely defined by any of the equations of system (5.1). Hence, the class ~1 
is a class of uniqueness for Eq. (2.8). 

As a second example, we consider the class of functions 

~ 2 = {  azn+b:min(a ,a+b)>O,  n>l .  a;e0} 

The first, second and fourth equalities from (4.3) give three equations 

a + 2 b = @  t, a+(n+l )b=(n+l )@2,  n a + b ( a + b ) = - @ 4  

The quantities a and b are uniquely found from the first two equations and n is uniquely found from the third 
equation. Hence, ~[t 2 is a class of uniqueness in the case of Eq. (2.8). 

We will investigate the class 

"P3 ={az + b : a + b  >O, b>0} 

Note that, together with the function q(z), it also contains the function q(1 - z) and therefore will not be a class 
of uniqueness for l?,q. (2.8). We take the subclasses of the class't'3 which do not simultaneously contain the functions 
q(z) and q(1 - z )  

W3l = {az + b : a~O,b > O }, '°/32 = {az + b : a ~ O,a + b > O} 
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From the first and fourth equalities of (4.3), we obtain the system of equations for a and b 

a +  2 b = * l ,  b(a+b)=--04 

This system of equations has two solutions l I 
a I = D," b I = "~(*1 - D);  a 2 = - D ,  b 2 = "~(*1 + D)  

( O  = ~J*l  2 + 4 *  4 ) 

the first of which belongs to the subclass ~'/31 and the second belongs to the subclass iF32. Consequently, the subclasses 
tF31 and W32 are classes of uniqueness in the case of Eq. (2.8). 

In a similar manner,  it can be verified that the classes of functions 

~4 = { a ( z - k )  -I : a > 0 , k < O } ,  ~S =(  a (z -~ ' ) - I  :a>0,2L>l} 

~F 6 = {aexpO, z) : a > O,k > 0}, ~F 7 = laexp(Xz): a > 0,k < O} 

are classes of uniqueness in the case of Eq. (2.8). 
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